
Technical advances in the past two decades have led 
to an increase in the generation of biological data. 
Gene and RNA sequencing, proteomics, metabolom-
ics, lipidomics, the advent of microbiome studies, and 
computational collation of clinical data have required 
increasingly sophisticated analytical techniques to derive 
meaningful conclusions. The application of systems biol-
ogy approaches allows investigators to integrate large 
datasets and undertake analyses across experimental 
and theoretical models. In this Review, we describe the 
growing number of omic techniques, together with their 
strengths and weaknesses. We examine areas in cardio-
vascular medicine in which these techniques have been 
applied, highlighting exemplary studies.

Systems biology to embrace complexity
Systems biology, as a formal discipline, is a philosoph-
ical position running counter to reductionist thinking. 
Put simply, systems biology attempts to explain biology 
in terms of interacting components. The action of an 
enzyme on a substrate is a system in the simplest terms, 
insofar as more than one component is considered and 
their interactions are crucial to the understanding of 
the model. These apparently simple systems have long 
been understood without the requirement for com-
plex computation or high-throughput measurements. 
However, the advent of technologies that can measure 
many distinct components of a system at once has led to 
more complex analyses, often requiring computational 

support. Systems biology is now a field predicated on 
the generation of large datasets measuring many ana-
lytes, in which interpretation requires modern compu-
tational approaches. Not a single, universally accepted 
definition of systems biology exists. For the purposes 
of this Review, we consider a study to be classified as 
systems biology if it fulfils two criteria: that more than 
one component is measured and that the interactions 
between components are essential to the conclusions.

Although other investigators have suggested more 
detailed or stringent definitions of systems biology, 
mandating computational analyses or specific data types 
(and it is true that this approach has become increasingly 
central), our loose definition allows for an understand-
ing of the philosophical rather than technical approach 
(Fig. 1).

Omics technologies
Although only 2% of the human genome codes for pro-
tein, the rest of the non-coding genome has emerged 
to be as functional and dynamic. Alongside an esti-
mated 20,000 protein-coding genes, tens of thousands 
of human non-coding RNAs (ncRNAs) have been 
identified1. Many regions of the genome regulate other 
genes, either through direct contact or via ncRNAs or 
DNA-binding or RNA-binding proteins2. Long ncRNAs  
(lncRNAs), microRNAs (miRNAs) and other ncRNA 
species seem to perform regulatory functions on pro-
tein expression, either through direct interaction with 
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DNA or proteins (as for lncRNAs3) or with other 
mRNAs (as for miRNAs4). The number of human pro-
teins is not equivalent to the number of protein-coding 
genes because a single gene can have several splice 
variants5,6 and, when translated, proteins are subject 
to post-translational modifications, which can differ 
according to the prevailing conditions7. These complexi-
ties can be interrogated using omics technologies, which 
can generate quantitative measurements of RNAs, pro-
teins or small molecules and can help to describe met-
abolic states8, pharmacological responses9–11 or disease 
phenotypes, particularly in combination with the use  
of electronic health records (EHRs)12–15 (Fig. 2). The 
availability of multiomics data over the past decade has 
encouraged the use of systems approaches16, in particu-
lar because of the capacity of these approaches to deal 
with multidimensional, heterogeneous data17,18. A dis-
cussion of the techniques and exemplary studies follows, 
and key studies are summarized in Table 1.

Genomics. Single-nucleotide polymorphisms (SNPs) 
are base pair differences in the genome between 
individuals. SNPs can be detected using sequencing 
approaches and can be statistically linked to pheno-
types to identify genetic associations with diseases in 
traditional genome-wide association studies (GWAS). 
GWAS have been undertaken for cardiovascular dis-
eases (CVDs), including acute coronary syndromes19–21, 
atherosclerosis22, atrial fibrillation23, sudden cardiac 
death24 and heart failure25,26. So far, 934 SNPs have 
been associated with CVD27. Studies have also found 
genetic interactions between known risk factors and 
subsequent coronary artery disease (CAD) and have 
moved beyond the predominantly white cohorts used 
in early studies28–30. Despite this success in identifying 
linkages, most GWAS discoveries have yet to be trans-
lated into benefits for patients. For example, perhaps the 
most robust finding with regards to CVD, an associa-
tion between the 9p21 locus and CAD and myocardial 
infarction, remains unexplained in terms of its mecha-
nism despite intense study31–39. As with many other risk 
variants, the 9p21 locus is within a non-coding region 
of the genome. The most likely candidate, ANRIL, is an 
antisense ncRNA with unknown biological function in 

CVD, although circular RNAs from this region have 
been implicated40–42.

Standalone GWAS do not consider the complex 
interaction between genes. Large-scale studies provide 
increasing statistical predictive power and can uncover 
the contribution of rare variants but the trade-off is the 
small effect size compared with that of more common 
variants. However, analysing the results of several gene–
phenotype linkages in parallel, for example, as part of a 
polygenic risk score, might begin to illustrate these inter-
actions. In the CARDIoGRAMplusC4D consortium,  
1.7 million SNPs were assessed for linkage with CAD 
and used to generate a genomic risk score43. This score 
provided an estimated risk of incident CAD based on an 
individual’s genetic profile and was validated in the UK 
Biobank. A standard deviation increase in the genomic 
score conferred a hazard ratio of 1.71 and remained pre-
dictive after corrections for common environmental and 
clinical risk factors43. This large effect on the risk of CAD 
is similar to that of lifestyle factors such as smoking and 
might form the basis of future clinical decision-making 
if superiority to existing risk scores can be shown. 
Among participants with a high genetic risk of CAD, a 
favourable lifestyle alone could nearly halve their relative 
risk of CAD44,45. The large effect of the environment and 
behaviour (such as smoking, diet, exercise and socio
economic status) on CVD are not traditionally captured 
in genomic analyses46,47. When both genetic and clinical 
risk scores were combined in the same study, susceptible 
individuals frequently had high polygenic and clinical 
risk scores in conjunction. Conversely, polygenic risk 
scores outperformed clinical risk scores in young indi-
viduals, potentially serving as early markers of clinical 
risk factors that might manifest in later life48.

A major issue for future polygenic risk scores is 
the description of confounding conferred by popu
lation structure in the cohorts analysed owing to 
unaccounted-for relatedness within study populations, 
as demonstrated by two near-simultaneously published 
studies investigating genetic determinants of height49,50. 
Furthermore, whether polygenic risk score approaches 
can account for the gene–gene interactions, or epista-
sis, is unclear, which further increases the complexity 
of potential interactions and for which few studies in 
CVD are available51. Nevertheless, genomic analysis is 
the most mature field among the omics approaches and 
other techniques should be expected to have their own, 
as yet unidentified, biases and limitations.

The use of genetic variants to represent environmen-
tally modifiable exposures as ‘instrumental variables’ 
creates the possibility of making causal inferences with 
observational data. The application of the instrumen-
tal variable method in GWAS has been referred to as 
Mendelian randomization and can be considered anal-
ogous to randomized controlled trials. Mendelian ran
domization studies are based on dividing participants into  
two groups of approximately equal size based on their 
genetic score, a number based on the variation in mul-
tiple genetic loci and their associated weights. Each var-
iant included in the genetic score is inherited randomly 
and independently of other variants included in the 
score. Therefore, the number of disease-related alleles 

Key points

•	Cardiovascular diseases are complex states, with the effect of the environment 
usually being far greater than that of the genetic status of an individual; therefore,  
the understanding of cardiovascular disease requires investigation of many biological 
levels.

•	Omics techniques generate very large, complex and non-linear datasets, which 
mandate a systems biology approach, that is, the understanding of a biological 
process through examining the interactions between heterogeneous components.

•	Current systems biology approaches applying network theories or machine learning 
to single-platform omics data have helped to make some progress in understanding 
cardiovascular disease but caveats remain.

•	Integrated multiomics approaches explain the interactions between omics dimensions 
and are likely to require new ontological approaches to describe their findings.

•	The lure of obtaining large datasets should not replace thoughtful, well-designed 
experiments; investigators must understand the technical and biological limitations 
of omics approaches alongside their strengths.
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that a person inherits should be random, allowing for 
causal inferences of randomly allocated genetic variants 
with disease52. Mendelian randomization studies have 
been proposed in addition to randomized controlled tri-
als to identify promising therapeutic targets for CVD53,54. 
Multivariate Mendelian randomization can assess the 
contribution of more than one gene variant and is likely 
to be increasingly used, particularly in complex dis-
eases such as CVD55,56. Many studies have investigated 
the genetic determinants of blood lipid levels, driven 
by both the clinical importance and the availability of 
validated, reliable measurements. A GWAS performed 
primarily in the Million Veteran Program cohort iden-
tified racial differences in the allele frequency of SNPs 

linked to blood lipid levels but strong agreement in the 
effect size within races57. Analysis of low-frequency 
genetic variants in non-European populations identified 
potentially new causal loss-of-function SNPs, including 
in PCSK9, and a Mendelian randomization approach to 
the EHR phenome demonstrated the presence of causal 
SNPs in the ‘druggable’ genome57 (Fig. 3). Predicted 
loss-of-function genetic variants can identify human 
‘knockouts’ to improve the search for drug targets58. 
Mendelian randomization studies have also been used 
to rule out causal factors for CVD, in principle allowing 
more rational approaches to drug discovery and testing. 
For example, whereas the plasma level of C-reactive pro-
tein is a well-established biomarker for incident CAD,  
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Fig. 1 | Levels of explanation in systems biology. Diseases and their biology can be explained by a systems approach, at 
different levels of explanation. a,b | At the level of clinical medicine, the systems approach is well established, integrating 
clinical signs, symptoms and investigations, such as electrocardiograms (ECGs), to describe disease states and syndromes. 
c | In the example in the figure, the interaction of chest pain, clinical examination and ECG changes describes the 
‘emergent’ syndrome of acute myocardial infarction. ECG changes are the product of integration of the spatiotemporal 
properties of varying action potentials acting as components of the system. Electrophysiology ablation therapies can 
target combinations of action potentials at this level. d | The action potential is the result of combinations of various 
channel components, combining to generate its phases. Diseases affecting these channels or variations in these channels, 
either at the level of the proteins or the arrangement of the various channels, will affect the initiation, shape and duration 
of the action potential. e | Finally, the Na+ channel is a system of protein subunit components that act to control Na+ flow 
across the cell plasma membrane. Changes in the protein structure caused by genetic variation or disease states will alter 
the function of the channel. Scientific research at this level focuses on basic science discovery. A pharmacological study 
requires an understanding of the molecular effects of the drug (panels d, e), surrogate and safety end points (panels b, c), 
and individual outcomes data (panel a). ICa, Ca2+ current; IK1, inward-rectifier K+ current; IKr, rapid delayed-rectifier K+ 
current; IKs, slow delayed-rectifier K+ current; INa, Na+ current; Ito, transient outward K+ current.
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a Mendelian randomization study determined that these 
levels were not causal and, therefore, C-reactive protein 
was not considered to be a promising target for drug 
therapy for CAD59. Platforms facilitating Mendelian 
randomization analyses across datasets from multiple 
polygenic risk scores are now publicly available60. This 
combination of genomic techniques might help to iden-
tify genetic relationships between disparate diseases. 
Interestingly, for CVD, genomic profiles linked with 
lifestyle factors, such as educational attainment, had 
protective effects61.

Other models of analysing genomic data exist. The 
omnigenic model of complex diseases posits that dis-
ease risk might be largely driven by genes with no direct 
relevance to disease62. Instead, perturbations in periph-
eral genes are propagated through regulatory networks 
(Box 1) to a much smaller number of core genes with 
direct effects. According to this model, if disease risk is 
defined as a trait, the genetic contribution for this com-
plex trait can be divided into direct effects from core 
genes and indirect effects from peripheral genes that reg-
ulate core gene expression63. This model, in particular 

Transcriptomics

Microarrays
• cDNA from samples is hybridized on chips containing a wide array of standard or 

customizable probes, allowing the relative quantification of many simultaneous 
transcripts. 

• High throughput, allowing standardized measurements of millions of 
single-nucleotide polymorphisms (SNPs) across large study populations at fairly low 
cost. 

• Only SNPs or RNA strands specifically included on the chips can be detected.
• Approaches include the Affymetrix GeneChip microarray.

Next-generation sequencing
• The sequence of DNA or RNA fragments is determined through iterative, 

single-nucleotide hybridization and fragment sequences are computationally 
aligned to a reference genome.

• Determines the full nucleotide sequence of samples.
• Pre-analytical sample treatment allows a degree of flexibility in sample requirements. 
• The Illumina platform is the most widely used approach and has been used in many 

highly phenotyped study populations.

Mass spectrometry
• Biological samples are separated and then ionized to form high-energy particles 

with a fixed mass to charge ratio, which is used to determine the identity and origin 
of the particles.

• Separation, ionization and detection techniques are flexible.
• Pre-analytical manipulation of samples, including the depletion of abundant analytes 

and mass-tagging affinity-mediated enrichment, allows experiment customization.
• Can detect and quantify proteins, lipids and other metabolites in a targeted or 

untargeted manner.
• Expensive and limited by abundance effects, in which the presence of 

high-abundance molecules masks the detection of low-abundance molecules.

NMR spectroscopy
• The abundance and 3D structure of known and novel proteins, lipids and 

metabolites can be determined by detecting the resonance spectra of biological 
molecules in an alternating magnetic field.

• Biological samples can be analysed using 1H-NMR or with 13C labelling to elucidate 
analyte turnover.

• Commercial platforms are available, offering a convenient analysis platform for 
clinical studies.

Electronic health records
• Very large datasets of clinical data are now available owing to the increasing use of 

electronic health records.
• Curated datasets, such as CALIBER, can be used to focus on cardiovascular disease. 

Analysis of these data can identify relationships between disease processes and, if 
linked to other omics sets (such as genomics), can help to identify causal factors.

Affinity-based platforms
• Proximity extension assays use antibody pairs conjugated to complementary 

oligonucleotides, which are amplified, allowing highly sensitive and specific, 
multiplexed measurements.

• Aptamer platforms use fluorescence-labelled oligonucleotides, allowing 
multiplexed detection without the need for antibodies.

Phenomics

Lipidomics

Metabolomics

Proteomics

Genomics

Fig. 2 | Omics platforms used in systems biology. Multiple analytical platforms can be used to interrogate samples  
and systems at a molecular level. In general, nucleotide-based experiments, such as genome-wide association studies, 
Mendelian randomization and transcriptomics studies, use quantitative PCR, microarrays and next-generation sequencing 
technologies. Next-generation sequencing and microarray approaches tend to offer discovery opportunities, whereas 
quantitative PCR is frequently used as a validation step. Proteomics, lipidomics and metabolomics approaches share 
common technologies, such as mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Proteomics 
approaches also include affinity-based platforms that are based on antibody pairs (such as the Olink proximity extension 
assay) and aptamers (SomaScan; SomaLogic). Phenomics requires access to often-unstructured electronic health record 
databases.
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Table 1 | Exemplary studies of multiomics approaches to cardiovascular disease

Study (year) Sample or disease Omics technique Systems analysis Main findings Ref.

Inouye et al. 
(2010)

Blood lipids, lipoproteins 
and inflammation markers 
(n = 518)

Genomics, transcriptomics, NMR 
metabolomics and lipidomics; 
comparisons with affinity-based 
measurements of inflammatory 
biomarkers

WGCNA and NEO analysis of 
normalized gene expression 
and NMR data; conditional 
co-expression of analytes 
across quintiles of core module 
expression

A core leukocyte–lipid 
network was identified, 
the expression of which 
correlated with 83 
metabolites and canonical 
markers of inflammation; 
the leukocyte–lipid 
network, containing genes 
related to basophils and 
mast cells, was implicated 
in close control of serum 
HDL levels

190

Greene et al. 
(2015)

987 publicly available 
genomic and 
transcriptomic datasets

Validated informatic findings in 
human smooth muscle cells

Regularized Bayesian 
integration to identify 
tissue-specific gene expression 
networks; NetWAS analysis 
linking SNP networks

Predicted and confirmed 
a regulated gene network 
responding to IL-1β 
stimulation

65

Talukdar 
et al. (2016)

Multi-tissue sampling 
in patients with CAD; 
samples from the STAGE 
cohort

Microarray SNPs and gene 
expression

WGCNA gene expression 
network analysis; association 
of networks with CAD; 
enrichment with previously 
identified SNPs associated 
with CAD; predictive Bayesian 
network analysis

Identified key driver 
genes in regulatory gene 
networks; confirmed the 
phenotypic relevance of 
key gene drivers in in vitro 
experiments

95

Miller et al. 
(2016)

CAD and coronary artery 
smooth muscle cells and 
coronary biopsy samples

ATAC-seq epigenomic analysis 
and ChIP sequencing in 
perturbed smooth muscle cells 
in culture; enrichment for CAD 
from existing GWAS analyses; 
validation in explanted coronary 
arteries and external datasets

Functional annotation using 
ENCODE; roadmap validation 
using eQTL cohorts

Identified causal 
gene loci involved 
in state-dependent 
differentiation of  
smooth muscle cells  
in atherosclerosis

93

Liao et al. 
(2016)

mRNA–protein complex 
pulldown from a mouse 
cardiomyocyte cell line 
in vitro

Mass spectrometry to identify 
the RNA–protein interactome

Referencing RBP with the 
OMIM database; combined 
discovery using RBDmap and 
spectral searches

Broader characterization 
of the RNA-binding 
proteome; discovery 
of overlap of the RNA–
protein interactome with 
proteins associated 
with CVD; identification 
of the Rossmann fold as 
an RNA-binding motif; 
implication of metabolic 
proteins in RNA-binding 
and therefore in gene 
expression

137

Langley et al. 
(2017)

Carotid endarterectomy 
samples

Proteomic and transcriptomic 
analysis of atherosclerotic 
plaques; validation of a 
tissue-derived biomarker panel 
in plasma in two prospective, 
community-based studies

Differential proteomic profiles 
were determined using 
NSAF-PLGEM; Limma was 
used to identify differentially 
expressed transcripts; 
co-expression network analysis 
identified a biomarker risk 
cluster

A nine-protein biomarker 
panel that captured 
inflammation in 
atherosclerotic plaques 
was identified; the 
biomarker panel predicted 
progression to manifest 
CVD in plasma samples 
of two prospective 
community-based cohorts 
with a 10-year follow-up

116

Vilne et al. 
(2017)

Atherosclerosis in 
a mouse model of 
gene-switch controlled 
hypercholesterolaemia

RNA microarray data from aortas  
of Ldlr−/−Apob100/100Mttpflox/floxMx1– 
Cre (Reversa) mice over a 
prolonged time course, with 
induced hypercholesterolaemia

Gene ontology-based 
identification of mitochondrial 
genes; WGCNA co-expression 
analysis of gene expression; 
identification of transcription 
factor binding sites; selection 
of top genes using an external 
dataset

Hypercholesterolaemia 
regulates the expression 
of Esrra and Ppargc1a, 
which are central to 
a network of genes 
involved in the regulation 
of mitochondrial 
biogenesis and are 
differentially regulated 
in atherosclerotic 
plaques; activation of 
this gene network leads 
to rapid expansion of 
atherosclerosis

98
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the key concept of core genes, has been challenged and 
remains controversial64. An attempt to describe these 
networks used genomic data combined with informa-
tion from data mining of publicly available datasets to 
determine the tissue profile of correlated networks of 
genes65. This study used previous knowledge of gene and 
protein expression in hundreds of smaller experiments 
and applied a GWAS-like approach, dubbed NetWAS, to 
link the expression of these networks with SNPs, poten-
tially identifying causal genes that control the expression 
of networks of genes in specific tissues. A network con-
trolled by IL-1β, considered to be a key cytokine in CVD, 
was validated in further external datasets65.

The new frontier is to establish the biological func-
tion of the strongest loci in CVD, with the hope that 
the information obtained from GWAS analyses will pro-
vide new treatment targets. For example, a differentially 
expressed gene network was identified in the periph-
eral blood samples of patients with CAD66. Subsequent 
enrichment analysis of this network with the use of 
the CARDIoGRAM database67 and other consortia 

databases implicated lipid metabolism and inflamma-
tory processes in CAD pathogenesis. For other diseases, 
such as atrial fibrillation, the clinical applicability of 
knowledge from genomics is less obvious. GWAS have 
identified risk loci for QRS duration68,69, PR interval70 
and sudden cardiac death24,71. However, the underlying 
aetiology of atrial fibrillation is complex and at least 
partially inherited72. GWAS have identified risk loci for 
atrial fibrillation23, but studies in humans, especially of 
gene expression, often focus on atrial fibrillation after 
cardiac surgery because of the availability of atrial 
appendage tissue73,74 and might therefore not be relevant 
to the highly prevalent lone atrial fibrillation.

Epigenomics and transcriptomics: gene expression, 
eQTLs and ncRNAs. Rather than comparing genomes 
with phenotypes, epigenomics considers interactions 
between genes. Studies of the expression of genes 
through quantifying relevant mRNA in a tissue, or 
transcriptomics, can give an indication of the dif-
ferential expression of these genes and model their 

Study (year) Sample or disease Omics technique Systems analysis Main findings Ref.

Klarin et al. 
(2018)

Blood lipid levels in a 
large, phenotyped patient 
cohort

GWAS of blood lipid levels; 
transcriptomic data from 
multiple tissues and cohorts; 
PheWAS using ICD-9 codes

Meta-analysis of multiple 
cohorts; multivariate 
Mendelian randomization of 
lipid-related SNPs associated 
with abdominal aortic 
aneurysms

Identified racial 
differences in the 
incidence of SNPs 
associated with lipid 
phenotypes; discovered a 
novel loss-of-function SNP 
correlated with adverse 
lipid profile and CAD; 
suggested a new potential 
therapeutic indication 
for PCSK9 inhibitors 
for abdominal aortic 
aneurysms

57

Lau et al. 
(2018)

Cardiac remodelling 
in wild-type mice 
from different genetic 
backgrounds in a 
model of hypertrophic 
cardiomyopathy

Deuterium-labelled mass 
spectrometry to analyse protein 
turnover; publicly available 
transcriptome data; interactome 
analysis using the STRING 
database

Unsupervised and 
interaction-enriched 
hierarchical and network 
clustering; functional 
enrichment using the 
Ensembl database

Identified 
contra-directional 
changes in protein 
turnover and gene 
expression; identified 
clusters of proteins with 
similar turnover profiles; 
showed that interacting 
proteins turn over at 
similar rates

188

Walter et al. 
(2018)

Cellular fractions from 
injured and healthy 
myocardium from 
Cx3cr1GFP/+ mice

RNA sequencing of macrophages 
isolated from the myocardium 
over a time course after 
iatrogenic myocardial injury

Unsupervised k-means 
clustering; partial 
deconvolution to determine 
cell-type mix; previous 
knowledge network analysis 
and Boolean dynamical model 
to determine steady states

Identified differential 
cluster expression in 
injured and healthy 
hearts; macrophages 
after myocardial 
infarction do not conform 
to the canonical M1/
M2 subtypes; network 
analysis determined 
three steady-state 
gene-expression profiles; 
microRNA–mRNA 
networks control gene 
expression in myocardial 
healing

99

ATAC-seq, assay for transposase-accessible chromatin using sequencing; CAD, coronary artery disease; ChIP, chromatin immunoprecipitation; CVD, cardiovascular 
disease; ENCODE, Encyclopedia of DNA Elements; eQTL, expression quantitative trait loci; GWAS, genome-wide association study; ICD-9, International 
Classification of Diseases 9th revision; Limma, linear models for microarray data; NEO, network edge orientation; NetWAS, network-wide association study;  
NMR, nuclear magnetic resonance; NSAF-PLGEM, normalized spectral abundance factor–power law global error model; OMIM, Online Mendelian Inheritance  
in Man; PheWAS, phenome-wide association study; RBP, RNA-binding protein; SNP, single-nucleotide polymorphism; STRING, Search Tool for the Retrieval of 
Interacting Genes/Proteins; WGCNA, weighted correlation network analysis.

Table 1 (cont.) | Exemplary studies of multiomics approaches to cardiovascular disease

Enrichment analysis
A set of bioinformatics and 
statistical techniques that 
identify classes of molecules 
(such as genes or proteins) that 
are over-represented in a large 
dataset and might have an 
association with a functional 
term, a biological pathway or 
disease phenotypes.
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interactions. This method has allowed the identi-
fication of expression quantitative trait loci (eQTLs) 
through comparison of SNPs with mRNA expression 
profiles75–80. eQTLs are regions of the genome that 
seem to regulate the expression of other genes at cis 
(adjacent) or trans (distant) locations. Initially identi-
fied through microarray assessment of immortalized 
cell lines and later with the use of massively parallel 
RNA-sequencing (RNA-seq) in tissues from large, 
phenotyped study populations, eQTLs that regulate a 
broad range of coding and non-coding regions of the 
genome have been identified81–84. For example, a GWAS 
found that a SNP on chromosome 1p13 was consis
tently associated with raised LDL levels and myocar-
dial infarction36. A study using eQTL data confirmed 
this finding and showed that the SNP at the 1p13 locus 
altered the expression of SORT1 in the liver85. Studies 
in animal models of RNA interference and viral over-
expression confirmed that Sort1 is involved in the 
regulation of plasma LDL levels85,86. Crucially, this 
series of studies included biological hypothesis testing 
and validation. Early studies using microarrays have 
been supplanted by studies using RNA-seq (Fig. 2) and 
informatic approaches, such as TopHat, can reduce 
false discovery rates87–89. Emerging approaches, such 
as modelling the effects of allelic expression (the rela-
tive expression of maternal and paternal haplotypes), 
might increase the sensitivity of the analyses but have 
not yet been applied to CVD90.

Other epigenomic approaches measure the degree 
to which the genome is available for transcription in 
tissue samples. Hi-C techniques determine the spatial 
orientation and association of regions of the genome  
in the nucleus, inferring direct gene–gene interactions91. 
The assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) is used to identify chromatin 
regions that are available for transcription92. In a study of 
coronary artery smooth muscle cells in vitro, ATAC-seq 
identified regions of the genome with altered trans-
posase accessibility under pathological conditions93. 
Combining these findings with the publicly available 
CARDIoGRAMplusC4D SNP database identified the 
accessible genomic regions most strongly associated 
with CAD. The genes in these regions were validated in 
other available databases as being potentially causative 
but further interrogation of the mechanism remains to 
be completed93.

As described above, GWAS have identified SNPs 
that seem to contribute to CAD and acute coronary 
syndromes19–21,26 but the identified risk loci contrib-
ute to only 10–20% of the expected inherited risk of 
CAD94. One reason might be that genes acting in net-
works, rather than as individual risk loci, potentiate 
these risks. In a study using transcriptomic data from 
diseased and healthy tissue from 612 patients with 
CAD from the STAGE study, the investigators created 
undirected gene co-expression networks and were 
able to infer 30 causal modules that included a gene 
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or eQTL previously linked to CAD in GWAS95. These 
modules tended to have novel key drivers, suggest-
ing that small differences in gene expression, which 
are detectable only when subject to network analysis, 
result in significant phenotypic changes. Three of these 
CAD-associated modules predicted atherosclerosis 
burden in a mouse model and individual silencing of 
four of the key driver genes (AIP, DRAP1, POLR2I and 
PQBP1) in cultured foam cells reduced cholesterol ester 
accumulation95. The identified key driver genes are 
involved in RNA processing, suggesting that gene–gene 
interactions are an important contributing factor to 
CAD in this analysis. Only one of the key driver genes 
(PQBP1) has been subsequently investigated, again in a 
systems approach studying the effects of anti-retroviral 
drugs on the development of foam cells96. The stage 

is set for further, hypothesis-driven investigation into 
these discoveries.

Similar work combining genotyping and RNA-seq 
was undertaken in six types of tissue from 600 patients 
with well-characterized CAD in the STARNET study97. 
Using data from GWAS and gene-regulatory stud-
ies, the researchers identified and enriched cis-eQTLs 
and generated overlapping causality networks for 
each tissue type and for a range of diseases, including 
CAD and Alzheimer disease, with the use of statis-
tical correlation-based techniques to identify causal 
mutations. A core network of 33 genes regulated by 
risk SNPs seemed to have regulatory effects across all 
diseases97. For example, SNPs regulating PCSK9 expres-
sion in abdominal fat (but not in the liver) were linked 
with raised LDL-cholesterol levels in plasma. This find-
ing awaits further experimental validation, especially 
because PCSK9 expression levels in adipose tissue are 
minimal compared with those in the liver83. The STAGE 
and STARNET studies have the benefit of including an 
analysis of more than one human tissue in a pheno-
typed cohort and the integration of existing GWAS and 
cross-species data. The strength of the STARNET study 
comes from the use of disease-relevant tissues to obtain 
expression data (for example, the analysis included ath-
erosclerotic artery samples) rather than blood samples. 
Crucially, the novel findings still require validation in 
biological experimental models.

Omics applications to animal models can offer 
mechanistic insight. In a longitudinal study of 
atherosclerosis-prone mice with conditional hypercho-
lesterolaemia, microarray transcriptomics analysis iden-
tified 12 networks of differentially expressed genes98. As 
mice aged under hypercholesterolaemic conditions, the 
expression of nuclear-encoded mitochondrial gene net-
works decreased, particularly during the stages of rapid 
atherosclerosis progression. This effect was rescued 
by genetically lowering plasma LDL-cholesterol levels. 
Co-expression network analysis led to the identification 
of the Esrra–Ppargc1a module as a cholesterol-sensitive 
‘switch’ for mitochondrial gene expression98. Although 
this investigation is exemplary in identifying modules 
of genes and in using external data sources to enrich 
the conclusions, the small number of animals (a total 
of 23 across five experimental conditions) compared 
with larger studies such as STARNET reduces its power 
to detect anything but the largest effects. Importantly, 
these effects might potentially be due to the infiltration 
of other cell types during plaque progression, rather than 
due to changes in the native cells.

Indeed, successful transcriptomic studies usually 
require careful isolation of specific cell types. A transcrip-
tomic study of isolated macrophages from a time course 
series of infarcted and healing mouse hearts detected 
changing proportions of gene expression identifying 
M1 or M2 subtypes99. Using gene-expression networks 
informed by previous knowledge of expression patterns, 
three steady-state combinations of gene-expression pro-
files were identified, corresponding to phases of infarction, 
healing and recovery. Further network analysis, including 
miRNA expression levels, suggested that these states were 
regulated and maintained by a dynamic miRNA–mRNA 

Box 1 | Network theory and analysis

Networks are computational models used in many systems biology investigations220,221. 
Networks allow the quantitative organization of complex biological information.  
In the network presented in the figure (panel a), circles represent individual components 
of the system, known as nodes222. These nodes can be genes, proteins or any other 
component. Connecting lines are called edges, which represent relationships between 
individual nodes. Edges can contain information about the strength, type and direction 
of this relationship from experimental data, adding predictive power to Bayesian 
computational methods or artificial neural networks171,223–225. Nodes have specific, 
calculated properties, such as centrality (describing the number of connecting nodes), 
betweenness (describing the degree to which a node communicates with the rest of the 
network) and accessibility (describing the individual node’s relationship to the rest of 
the network.)
Biological networks are ‘scale-free’ networks, they are composed of a few highly 

connected hubs that are central to the biological process and many sparsely connected 
nodes that seem to have more modest effects on the system under study. Disease- 
causing nodes in cardiovascular genomic systems are usually peripheral nodes with low 
connectivity226,227. This observation is mirrored in the relatively weak contributions of 
individual genes to the overall burden of cardiovascular disease, in which entire networks 
seem to have a greater contribution.

Modules or clusters within a network are closely related nodes sharing topographical, 
functional or disease characteristics. Modules or clusters share edges and form edges  
with one another’s neighbours228. Modules or clusters are assumed to work together in a 
subsystem (in pink in panel a and in isolation from the main network in panel b). Objects 
that are found to share statistically similar expression patterns (that is, are highly expressed 
or lowly expressed together) are assigned a network edge with a value describing this  
link in a co-expression network. Substrates that share differential expression values are 
described as being differentially co-expressed and are linked with an edge in a differential 
expression network229.

The co-expression or differential expression data do not determine causality. 
Furthermore, the concept of attaching significance to changes in the relative 
concentration of molecules is potentially misleading. A gene with tightly regulated 
expression might be central to a system but have no differential expression in a large 
metabolic perturbation. This gene would be neutral in a differential expression 
analysis but detected in more traditional knockout or dose–response models.
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network99. Pre-analytical processing of RNA-seq data can 
offer novel insights into ncRNAs. For example, the ribose-
quencing technique, in which ribosome-bound mRNA is 
used to infer protein translation, has been used to describe 
the cardiac translatome and to identify microproteins 
translated from lncRNAs and circular RNAs100, which were 
previously considered to be translationally silent.

Genetic variants identified in transcriptomic studies 
that do not show an association in GWAS should not 
be discounted for further study. Disease risk is often 
mediated by multiple cell types, in which the same 
components might have different, interacting functions. 
For example, miR-126 is a crucial miRNA for vascular  
function and endothelial integrity101. miR-126 is  
not only highly abundant in endothelial cells102 but 
is also present in megakaryocytes and a SNP altering  
miR-126 levels was shown to be positively correlated 
with platelet reactivity103,104. Therefore, miR-126 remains 
an important regulator of at least two central biological 
processes related to CVD, endothelial cell function and 
platelet reactivity. However, a miR-126-related genotype 
has not been reported as conferring risk of CVD in any 
GWAS analysis to date. Given that cellular networks vary 
according to cell type, the quantitative effect of a variant 
would be an average of its effect size in each cell type62.

Proteomics: mass spectrometry and affinity-based 
approaches. Mass spectrometry allows the multiplexed 
discovery and quantification of proteins in a biological 
sample via comparison with known protein databases, 
quantification of tagged proteins105,106, detection of newly 
synthesized proteins107,108, and detection of conforma-
tional changes109 and post-translational modifications110. 
Current limitations include cost, detection bias in favour 
of high-abundance proteins and incomplete coverage of 
the mammalian proteome111. These challenges can be par-
tially overcome through the depletion of high-abundance 
plasma proteins112, the further pre-fractionation of sam-
ples or through targeted proteomics approaches that ana-
lyse only the proteins of interest111. A targeted proteomics 
approach overcomes stochastic sampling and contributes 
to data completeness albeit at the expense of proteome 
coverage. Data-independent acquisition is a novel proteom-
ics method that combines the advantages of targeted 
proteomics with the broader coverage of discovery pro-
teomics by generating a ‘digital fingerprint’ of all acces-
sible proteins in a sample113,114. This advance facilitates 
the high-throughput analysis of hundreds to thousands 
of proteins in a given sample, with improved data com-
pleteness. Nonetheless, throughput and costs as well as 
assay drifts can make applying mass spectroscopy-based 
proteomics workflows to very large cohorts prohibitive.

Other technologies, such as SomaScan (SomaLogic) 
and proximity extension assay (Olink) technologies, 
benefit from their applicability at scale but were initially 
designed for a single sample type: human plasma. The 
Olink proximity extension assays combine the specificity 
of antibody techniques with DNA amplification steps. 
Proximity extension assays rely on the binding of two 
antibodies to a single protein, bringing their conjugated, 
complementary DNA strands into proximity and ampli-
fying and detecting the resulting double-stranded DNA. 

Antibody–DNA pairs can be multiplexed, currently 
allowing for the discovery of a total of 1,536 proteins in 
plasma115. Unlike mass spectrometry, the amplification 
steps in the Olink proximity extension assay allow less 
abundant proteins, including cytokines or chemokines, 
to be better detected. The use of antibody–DNA pairs 
increases specificity. Our group has used the Olink plat-
form techniques alongside mass spectrometry to investi-
gate potential plasma biomarkers for incident CVD and 
atrial fibrillation116,117. Combinations of strategies, rather 
than reliance on a single platform, offer a deeper, more 
quantitative coverage (Fig. 4).

The SomaLogic  technolog y uses  unique, 
protein-binding oligonucleotides (slow off-rate modi-
fied aptamers or SOMAmers) to increase the depth of 
proteomic analysis. The use of the SomaScan assay in 
plasma profiling in CVD illustrates the complexity of 
systems approaches118. This technique harnesses apta
mers to detect plasma proteins in multiplex119. Panels of  
1,000–5,000 protein binders are available, offering the 
convenient, scalable detection of proteins, but the tech-
nique encounters challenges when attempting to dis-
cover novel biomarkers owing to the limited selection 
of targets. A study measuring 1,129 plasma proteins after 
alcohol septal ablation in patients with hypertrophic 
cardiomyopathy identified the established biomarkers 
of myocardial injury troponin I, creatine kinase muscle–
brain and myoglobin120. A follow-up study in the same 
cohort using a platform with 4,783 proteins confirmed 
that troponin I had the greatest fold-change after 
planned myocardial injury121. By contrast, our group 
used mass spectrometry for the discovery of novel bio-
markers of myocardial infarction, identifying cardiac 
myosin-binding protein C as a promising and novel 
biomarker of myocardial injury, which was missed by 
the aptamer approach122–124.

A SomaScan investigation of a cohort with a 
well-phenotyped cardiovascular risk profile also iden-
tified well-known biomarkers for cardiovascular risk 
(such as C-reactive protein, apolipoprotein E (apoE) 
and matrix metalloproteinase 12 (MMP12))125. Similarly, 
Olink panels were used in combination with a super-
vised machine learning approach to identify the circulat-
ing protein profile in patients with or without high-risk 
coronary atherosclerotic plaques, confirming elevated 
MMP12 levels as a risk marker for CAD115. Surprisingly, 
a large study using the SomaScan platform identified 
causal SNPs (protein quantitative trait loci (pQTLs)) that 
affected the plasma protein abundance of MMP12 and 
inferred a protective effect of MMP12 against coronary 
heart disease126. These apparently conflicting findings 
have not yet been resolved but highlight the probable 
environmental rather than genetic determination of the 
levels of many plasma biomarkers and the limited vari-
ation in plasma concentrations that might be explained 
by pQTLs.

Future work will lead towards evidence-based CVD 
biomarker panels that can then be tested in larger 
cohorts. For example, application of the SomaScan 
panel to plasma from five large, independent cohorts 
and the use of a supervised machine learning algorithm 
identified a 13-protein biomarker panel to predict the 

Mass spectrometry
A category of analytical tool 
that is used to measure the 
mass-to-charge ratio of one  
or more molecules present  
in a sample. Typically, mass 
spectrometry can be used to 
identify and quantify unknown 
compounds and to determine 
the structure and chemical 
properties of molecules.

Data-independent 
acquisition
Mode of data collection in 
mass spectrometry, in which all 
precursor ions within defined 
mass to charge windows are 
fragmented sequentially,  
rather than the selection and 
fragmentation of the most 
abundant precursor ions in 
data-dependent acquisition 
approaches.

Aptamers
Molecules, for example, 
oligonucleotides, that bind  
to a specific target molecule 
and are used to perform 
high-throughput proteomics 
quantification such as in the 
SomaScan (SomaLogic) 
platform.

Protein quantitative trait 
loci
(pQTL). Genomic loci that 
explain a significant proportion 
of the variation in the 
quantities of a protein in  
a set of biosamples.
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probability of a future cardiovascular event that achieved 
an area under the curve of 0.69 in the validation cohort, 
similar to but not significantly better than assessment of 
standard CVD risk factors127. In a more complex study 
design, a comparison of the measurements of the same 
1,129 proteins across three genotyped study cohorts 
determined that the expression levels of 268 proteins 
could be determined by SNPs128. Using these data, pQTLs 
were generated to directly impute protein levels in large 
GWAS cohorts based on the genotype alone. These 
pQTLs were used to impute protein measurements in a 
study population with the use of features selected from 
EHR databases, leading to the identification of 55 pQTLs 
that predicted 89 clinical diagnoses. External validation 
through direct measurements of pQTL targets in patients 
with clinically determined indices of atherosclerosis 
confirmed C-type lectin domain family 1 member B and 
platelet-derived growth factor receptor-β as biomarkers 
for atherosclerosis. This study combines genomic, pro-
teomic and EHR data to identify new potential pathways 
to understand CVD; however, recognizing the limita-
tions of each step is important. Early assessment of the 
SomaScan platform found that 27% of the aptamers 
were more specific for targets in chicken plasma than 
for human proteins129. Furthermore, around 14% of the 
aptamers bind and detect more than one protein or iso-
form, and 32% have differential binding, and thereby 
quantification, owing to the protein sequence variation 
caused by SNPs. Therefore, aptamer binding does not 
necessarily measure the true protein concentration126. 
Finally, the reliance on EHR-derived phenomics has 
been shown to be subject to substantial potential bias 

and inaccuracy, particularly related to incentivized areas 
of medicine15,130,131. Despite these limitations, the appar-
ent convenience of outsourced protein measurements, 
without the need for training and generating experimen-
tal expertise in-house, is likely to lead to many studies 
using the Olink and SomaLogic proteomic panels in 
cohorts of increasing size. For example, the application 
of the SomaScan panel to plasma from 4,263 individuals 
and using age alone as an independent variable allowed 
the identification of ‘waves’ of co-expressed proteins  
(a ‘proteomic clock’) and demonstrated the relationships 
between these waves and CVD132.

The raw abundance of proteins in a given sample does 
not take into consideration the interactions between 
proteins, which are crucial to understanding the biolog-
ical landscape. Protein–protein interaction experiments 
have densely mapped the interactome with the use of 
high-throughput yeast two-hybrid experiments133,134. 
Enriching GWAS studies with interactome data has 
helped to identify putative gene–protein networks of 
interacting proteins related to hypertension135. Protein–
protein interaction experiments previously relied on the 
hybridization of physically interacting proteins expressed 
in modified yeast to generate a detectable colour change. 
A high number of putative interactions between pairs of 
proteins have been discovered and are available in large 
public databases. More recently, information on the pro-
tein interactome and 3D structure of proteins has become 
available through harnessing proximity-based crosslink-
ing mass spectrometry136. For example, a study using an 
unlabelled mass spectrometry approach to analyse RNA–
protein complexes generated through ultraviolet-induced 
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Fig. 4 | Combined approaches to proteomics analysis. The presence of high-abundance proteins, such as serum albumin 
or immunoglobins, in the highly complex plasma matrix directly affects the sensitivity of mass spectrometry to detect 
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Interactome
The whole set of molecular 
interactions in a particular 
sample, tissue or cell in a 
specific organism or phenotype.
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crosslinking in cultured mouse cardiomyocytes identified 
RNA-binding proteins that can influence gene expres-
sion, many of which were found to have roles in interme-
diate metabolism, highlighting previously unidentified 
protein-to-gene regulation137.

Metabolomics and lipidomics. Metabolomic studies 
are traditionally aimed at identifying small molecules 
but often also include lipid and lipoprotein species138. 
Lipidomic approaches involve the assessment of molec-
ular lipid species rather than lipid classes and these lipid 
profiles have been associated with CVD risk factors139–141. 
The clinical success of the PCSK9 inhibitor class of 
drugs142 has further proven the LDL hypothesis, in 
which lowering plasma LDL levels reduces the risk of 
CVD. Many large epidemiological databases and stud-
ies, including the UK Biobank, take advantage of a com-
mercial nuclear magnetic resonance (NMR) metabolomics 
platform. This metabolomics platform uses a proprie-
tary technology that is based on two 1H-NMR analyses 
per sample, each optimized to detect different classes of 
biomolecules at different concentration ranges143. One 
study applied this NMR platform to analyse plasma 
from genotyped participants from the PROSPER study 
of pravastatin, embedded in a wider population study of 
eight large genomics cohorts144. The metabolomic effects 
of a loss-of-function PCSK9 variant, as determined by 
Mendelian randomization, and those of therapy with 
statins were strikingly similar when assessing lipid and 
lipoprotein species. This finding suggests that physio-
logical responses to changes in plasma LDL-cholesterol 
levels are shared between statin and PCSK9-inhibitor 
therapies.

Our group undertook a mass spectrometry lipidomic 
analysis of plasma from a prospective study cohort and 
identified a cluster of lipids that crossed traditional 
lipid-class boundaries and conferred CVD risk145. We 
then used agglomerative hierarchical clustering to ana-
lyse a novel, targeted mass spectrometry panel of apolipo-
proteins in the same cohort and found that high plasma 
levels of apolipoprotein components of triglyceride-rich 
lipoproteins (apoC-II, apoC-III and apoE) were strongly 
linked with adverse CVD outcomes146. An antisense 
RNA therapy targeting apoC-III has shown promising 
results in a phase II study147 and, in addition to reduc-
ing plasma levels of apoC-III, also lowered apoC-II 
and apoE concentrations146. The association between 
triglyceride-rich lipoproteins and the risk of CAD 
was replicated in other study cohorts with the use of 
NMR148. The emergence of triglyceride-rich lipoproteins 
as mediators of CVD risk has led to the consideration 
of all lipoproteins containing apoB as being associated 
with the risk of CAD149,150. This signal was also seen in 
a multivariate Mendelian randomization analysis of the 
UK Biobank, in which SNPs linked to increased apoB 
levels in plasma conferred the greatest risk of CVD and 
plasma triglyceride levels were also identified as being 
potentially causal151. Other studies have used a mass 
spectrometry-based lipidomics approach to analyse 
plasma, identifying ceramide species as a lipid subclass 
whose levels were associated with the risk of CVD and 
were modified by statin therapy140,152.

Microbiomics: the TMAO story. The microbiome com-
prises the total genetic content of the microbiota of all 
commensal and pathogenic microorganisms residing at 
a particular site in a host. Measurement of the microbi-
ome in a sample depends on the accurate DNA or RNA 
sequencing of all prokaryotic, fungal and viral microor-
ganisms on or within the host, which is a dynamic rather 
than fixed system153,154. Gut microbiota-derived metabolites 
have been implicated in the progression of atherosclero-
sis and the risk of thrombosis155,156. The apparent ubiquity 
of microbiota-related findings was noted and questioned 
in 2020 (ref.157). As this new field matures, a more critical 
approach will be applied to microbiome research.

The poster child for the potential importance of the 
gut microbiota in CVD is the discovery and validation 
of trimethylamine-N-oxide (TMAO). Discovery of this 
microbiota-derived metabolite of choline as a biomarker 
and potential treatment target for atherosclerosis inte-
grates observational and interventional data across 
multiple studies and systems. Using an in-house pro-
ton NMR platform to analyse aortas from atheroprone 
apoE-deficient mice, we initially described that TMAO 
was present in advanced, but not early, atherosclerotic 
plaques158. Subsequent studies used targeted methods to 
measure TMAO in the plasma of patients with stable or 
unstable CVD. An unbiased mass spectrometry-based 
metabolomics approach in a cohort of patients with 
CAD identified a cluster of metabolites that predicted 
subsequent adverse cardiovascular outcomes159. One 
of these metabolites was confirmed to be TMAO. In a 
second study, the same group detected elevated TMAO 
levels in plasma from healthy participants who received 
heavy isotope-labelled phosphatidylcholine together 
with choline-rich foods160. Furthermore, TMAO was 
undetectable in plasma after the suppression of intesti-
nal microbiota with antibiotic therapy, confirming that 
dietary choline, metabolized by commensal bacteria, 
was the source of TMAO. Elevated plasma TMAO levels 
were associated with an increased risk of adverse cardi-
ovascular events over a 3-year follow-up period160. The 
mechanisms by which TMAO contributes to CVD risk 
have been investigated. Patients with recent ischaemic 
stroke who had raised plasma TMAO levels had more 
circulating pro-inflammatory intermediate monocytes, a 
phenotype linked to CVD161, although this study did not 
demonstrate causality. Further work has identified plate-
lets as potential mediators of the TMAO-associated risk 
of thrombosis162 and a non-lethal inhibitor of bacterial 
enzymes reduced the diet-induced increases in TMAO 
levels in mice and reduced platelet hyper-reactivity163,164.

Clinical validation of the concept of a causal role of 
TMAO in CVD has met challenges. In studies includ-
ing further statistical analyses, plasma TMAO levels 
have been shown to be associated with renal disease165. 
Chronic kidney disease is a known risk factor for CVD 
and the direction of causation between these three enti-
ties is not yet established. Two studies published in 2020 
have investigated the predictive value of plasma TMAO 
levels for the risk of CVD. A longitudinal study in  
760 women found that increases in plasma TMAO levels 
over a decade were associated with incident CVD but the 
study relied on the self-reported rather than measured 

Nuclear magnetic resonance
(NMR). A physical phenomenon 
in which nuclei in a strong 
constant magnetic field are 
perturbed by a weak oscillating 
magnetic field and respond by 
producing an electromagnetic 
signal with a frequency 
characteristic of the magnetic 
field at the nucleus. This 
physical phenomenon is used in 
NMR spectroscopy, which is a 
technique for determining the 
structure of organic compounds 
with applications in lipoprotein 
profiling and metabolomics.
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determination of chronic kidney disease166. A nested 
case–control study in a clinical trial on the antiplate-
let agent ticagrelor confirmed a relationship between 
TMAO levels in plasma and the risk of renal disease and 
recapitulated the association between elevated TMAO 
levels and a higher risk of adverse cardiovascular out-
comes in patients with previous myocardial infarction167. 
However, the study did not find a significant difference 
in the effect of ticagrelor across plasma TMAO quartiles 
and the association between TMAO levels and CVD risk 
was not significant after adjustment for the traditional 

biomarkers of CVD, again questioning the causal role of 
TMAO in CVD. Other effects of the gut microbiota on 
CVD have been investigated. Statin therapy was shown 
to reduce the Bact2 enterotype associated with obe-
sity and to be associated with an altered inflammatory 
phenotype168.

Phenomics: systems at the human level. The curation and 
combination of large datasets from EHR allow the gen-
eration of interrogable resources12,14,169. When other clin-
ical data are included, such as laboratory or radiological 
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results, computational techniques can be applied to dis-
cover associations or predictors of disease. A study con-
ducted in 2017 linked four large clinical databases in the 
CALIBER research platform to investigate bleeding and 
antiplatelet strategies after myocardial infarction170. The 
study demonstrated the existence of a dynamic risk profile 
within the first year after myocardial infarction, recom-
mending ongoing risk assessment for antiplatelet ther-
apy. Importantly, non-health factors, such as changes in 
reimbursement criteria, can bias EHR data. An analysis of 
EHR-coded diagnoses leading to the implantation of coro-
nary stents found that the reporting of unstable angina as 
an indication for the procedure increased significantly in 
regions where ‘appropriate use’ criteria had been applied 
but not in a region where these criteria were not in place131.

Machine learning, in which mathematical algorithms 
provide novel insights or predictions that are based 
on large datasets, is predicted by some investigators to 
become central to the analysis of the large, highly complex 
data generated by omics techniques171–175. A combination 
of supervised and unsupervised machine learning meth-
ods was used to identify differences in electrocardiogram 
(ECGs) to predict death in an population of patients with 
acute CAD176. A study using an unsupervised approach 
identified three subgroups among patients with heart fail-
ure with preserved ejection fraction on the basis of clinical 
data177. A supervised learning algorithm using echocar-
diography data achieved a 96.2% accuracy for classifying 
either constrictive or restrictive physiology178. A super-
vised learning algorithm applied to coronary CT angiogra-
phy and clinical data from 10,030 patients with suspected 
CAD outperformed traditional Framingham risk scores 
and other imaging-derived prognostic indicators179. 
Finally, a deep neural network approach to analyse >2 mil-
lion ECGs from a single database outperformed clinical 
risk scores and clinicians in predicting 1-year mortality180. 
Machine learning approaches in cardiology have so far 
been primarily applied to the interpretation of clini-
cal rather than biological data, where machine learning 
largely supports or replaces the clinicians’ performance of 
repetitive or laborious tasks181. Novel biological insights 
that are based purely on machine learning have so far been 
elusive. The application of these techniques to very large 
cross-platform omics approaches might help to identify 
disease processes or entities that escape traditional models.

Multiomics approaches to CVD
A strength of a systems biology approach is the poten-
tial to include measurements from multiple platforms. 
Table 1 highlights exemplary studies of cross-platform 

omics approaches combined with computational 
approaches to reach robust experimental conclusions.

Inherited cardiomyopathies offer a rich substrate 
for investigation with a systems approach, because the 
aetiology of these conditions is founded on an abnor-
mal genome and systems analysis can therefore take 
advantage of the full range of omic datasets. More than 
30 genes have been reported to contribute to inherited 
forms of dilated cardiomyopathy, with a substantial 
overlap with genes associated with hypertrophic car-
diomyopathy and with genes with a range of proposed 
cellular functions26,182–185. However, these genes were 
not differentially expressed in patients with dilated car-
diomyopathy186,187. Mutations linked to cardiac disease 
are often found within sarcomeric proteins and might 
alter protein interactions rather than gene expres-
sion. Furthermore, protein turnover rates identified 
by deuterium-labelled peptides did not demonstrate 
a universally positive correlation of protein turnover 
and gene expression in mouse models of hypertrophic 
cardiomyopathy188 (Fig. 5). By contrast, differentially 
expressed miRNAs and proteins were identified in early 
manifestations of an established mouse model of dilated 
cardiomyopathy with the use of microarray techniques 
and were validated with RT-qPCR and shotgun proteomic 
approaches189. The action of the identified miRNAs  
was further investigated through analysis of target pro-
tein expression and the study investigators suggest that 
these miRNAs regulate apoptotic pathways by altering 
specific protein targets. This study demonstrates how 
mechanistic elucidation must use data from multiple 
omic dimensions.

Multiomics analyses of plasma samples have offered 
insight into the complex relationship between appar-
ently distinct regulatory axes. An early example of com-
bining omics measurements, in this case whole-blood 
RNA-seq with targeted NMR metabolomics, identified 
a gene-expression cluster that incorporated genes related 
to both immune cells and lipid biology and linked the 
gene module expression with previously identified pro-
tein biomarkers for cardiovascular risk190. The degree of 
gene clustering varied as the plasma levels of the indi-
vidual lipids changed, describing the dynamics of a puta-
tive network between lipid-producing cells and immune 
cells190. Whole-blood transcriptomics and metabo-
lomics were combined in a further study, identifying 
cross-omic correlations between mRNA and metabolite 
levels191. A weighted bipartite network analysis allowed 
the identification of previously known regulatory path-
ways. Gene ontology enrichment of the transcriptome 
identified crosstalk between pathways, again including 
lipid–immune interactions192. Mass spectrometry-based 
lipidomics of plasma from three large study populations 
was combined with Mendelian randomization to deter-
mine five new causal SNPs for variations in plasma 
lipid levels, with polyunsaturated lipids demonstrating 
the strongest genetic control, whereas traditional lipid 
classes had a relatively weak inheritability193. GWAS 
investigating associations with algorithmically derived 
covariate clusters of metabolites found nine new gene 
loci, including SERPINA1 and AQP9, to be associated 
with specific metabolic clusters containing LDL and 

Fig. 5 | Integrated omics analysis of proteome dynamics during cardiac remodelling. 
The figure shows the experimental outline of a study that used an integrated omics 
approach to assess the proteome dynamics during the development of pathological 
cardiac hypertrophy in mice188. The investigators induced pathological cardiac 
hypertrophy by isoprenaline stimulation in different mouse strains, with concurrent 
administration of deuterium oxide in the drinking water to label cardiac proteins during 
the cardiac remodelling process. Protein and RNA samples were analysed by mass 
spectrometry and RNA microarray analysis, respectively. Analysis of the data allowed  
the correlation of protein and transcript pairs and the identification of the dynamics of 
protein turnover in cardiomyocytes during cardiac remodelling. Protein networks were 
identified by co-turnover rates, providing a temporal understanding of the pathological 
processes underlying cardiac hypertrophy. Adapted with permission from ref.188.

◀

Deep neural network
A form of an artificial neural 
network with many hidden 
layers, used in classification, 
regression, clustering and 
other machine learning 
applications.
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intermediate-density lipoprotein (IDL) particles in the 
case of SERPINA1 and a broad range of metabolites 
in the case of the AQP9 locus194. Fine mapping of these 
genes identified SNPs contributing to this effect. A 
higher expression of Aqp9 in the liver was associated 
with a larger atherosclerotic lesion area in atheroscle-
rotic Apoe−/− mice and the expression of both SERPINA1 
and AQP9 was higher in human atherosclerotic plaques 
than in control samples. This study combined a genomic 
and metabolomic approach with validation of the find-
ings in the relevant tissue. A study using the METSIM 
cohort applied multivariate analyses of gene–metabolite 
relationships and identified 13 genes (APOA5, APOC1, 
CELSR2, CETP, DOCK7, FADS2, GALNT2, GCKR, 
LDLR, LIPC, LPL, PCSK9 and TRIB1) that were respon-
sible for 75% of the genetic associations with metabolite 
variability195. Most of these genes code for well-known 
regulators of lipid metabolism but interactions with age 
and the use of statins were identified.

Our group undertook a multiomics analysis 
of human atherosclerotic plaques by combining 
gene-expression microarray and proteomic mass spec-
trometry data and applying a number of validation 
techniques116. We identified a tissue-based biomarker 
panel that included pro-inflammatory molecules that, 
when measured in plasma, outperformed traditional 
risk factors and plasma C-reactive protein levels as 
predictors of CVD in two independent cohorts. This 
approach using tissue material from humans with the 
relevant disease, in which the biomarker candidates 
should be most enriched, along with subsequent valida-
tion of findings in plasma could be a paradigm for mul-
tiomics research. Of note, fold-changes in mRNA levels 
were far smaller than those in protein levels, requiring a 
tenfold increase in sample size to achieve adequate sta-
tistical power. In the future, studies with large cohorts, 
such as the GLOBAL study (n = 10,000), will integrate 
multiomics data from individuals who have been closely 
phenotyped (in the case of the GLOBAL study with  
coronary CT angiography196).

A major challenge for multiomics research is the inte-
gration of datasets derived from different analytical tech-
niques. Most multiomics approaches use cross-platform 
omics data to validate one another when investigating 
a specific phenotype. This approach is useful but does 
not exploit the full potential of the multiomics data. 
Despite promising computational methods that are 
explicitly designed for multiomics techniques197, the 
lack of standardization across platforms and the limita-
tions of the existing multiomics techniques leave room 
for improvement in exploring multiomics analysis. For 
example, more emphasis should be given to the disagree-
ments between the different levels of molecular informa-
tion (such as overexpressed transcripts corresponding 
to reduced protein levels) to reveal the mechanisms that 
explain these inconsistencies. Network analysis of com-
plex datasets (Box 1) can incorporate data from more 
than one experiment and, indeed, more than one sam-
ple type. Identifying multiomics modules or construct-
ing networks from other networks might help to enrich 
analyses in the future but is currently methodologically 
immature198,199.

From tissue homogenates to single cells
Although most CVDs arise on the background of a nor-
mal genome, the system is composed from a number of 
different cell types that will differentially contribute to 
measurements of omics profiles and whose relative abun-
dance is still undetermined200. Multiomics approaches 
must respect the biology of the sample under analysis. 
For example, fibroblasts and endothelial cells comprise 
a small proportion of the cardiac mass, but these cells 
are likely to be the ones with the greatest contribution 
to nuclear content and therefore determine much of the 
cardiac mRNA and ncRNA content. Conversely, cardio-
myocytes would contribute the most to the cardiac pro-
tein pool. Standalone analysis of whole-heart RNA and 
protein abundance would draw potentially inaccurate 
correlations as a result of these biases.

Microfluidics techniques will enable the omic analy
sis of single cells selected from a tissue, in theory 
allowing the generation of a complete spatiotemporal 
model of a cell or tissue201–203. Careful selection of cell 
and tissue types as well as of time during the disease 
course or under experimental conditions, might allow 
a detailed and integrated understanding of the cardio-
vascular system to be obtained but necessitates a tho
rough understanding of the biology at play and of the 
measurement techniques in use. For example, droplet 
RNA-seq is applicable to single-cell techniques owing 
to the amplification-based detection of reads, whereas 
single-cell proteomics is currently limited to multiplexed 
antibody assays or mass cytometry, necessarily reduc-
ing the number and increasing the bias of simultane-
ous measurements204–206. However, single-cell selection 
depends on the cell in question surviving the relevant iso-
lation technique. More stable cells, such as lymphocytes 
or fibroblasts, might be robust enough to be collected in 
fluorescence-assisted cell-sorting experiments, but more 
labile cells, including neutrophils, are likely to degranu-
late or activate. Conversely, cardiomyocytes can be too 
large for conventional droplet RNA-seq. Approaches 
including the relative location of a single cell in a tis-
sue block and different time points along the course 
of differentiation have demonstrated the overlapping 
and fluid nature of traditional cell-type categories. For 
example, unsupervised clustering analysis of single-cell 
RNA-seq data from fibroblasts differentiating to induced 
cardiomyocytes demonstrated a degree of heterogene-
ity among starting populations of fibroblasts and the 
consequent suppression of non-cardiomyocyte sub-
groups as differentiation occurred207. These approaches 
are increasingly applicable to 3D tissue samples208.  
Assuming this heterogeneity exists in vivo, the logical 
conclusion of the increasing resolution of both assays 
and sample selection is the generation of new categories 
of cell types that will, in turn, have to be subjected to 
empirical and reductionist experimental validation. This 
work has begun in a study using post-mortem human 
samples in which single-nuclei RNA-seq identified 
heterogeneity in cell subtypes between cardiac chambers 
and between sexes and revealed 20 subclusters of cell 
types in the heart209. However, the use of post-mortem 
samples complicates the analysis because of variations in 
RNA degradation rates.

Fine mapping
Process by which a trait- 
associated region from a 
genome-wide association study 
is analysed to identify the 
particular genetic variants that 
are most likely to be causal.
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Finally, exemplars of a systems biology approach in 
CVD that model single cellular or organelle function are 
available. Genome-scale metabolic networks constructed 
from gene ontology annotations and manual curation 
of experimental data can be used for metabolic-control 
analysis of metabolic pathways210,211. This technique 
has been applied to study cardiomyocytes, generat-
ing a metabolic model of the heart that simulated the 
interactions between 368 metabolic functions and can 
model the effects of perturbations in important metab-
olites such as glucose or fatty acids212. The application of 
flux balance analysis, in which the interaction between 
enzymes, metabolites and cellular function is modelled, 
identified a group of reactions predicted to be central to 
mitochondrial responses to hypoxia213. These putative 
reactions were mapped to SNPs that are prevalent in 
high-altitude dwelling populations.

More than the sum of its parts?

“To whatever degree we might imagine our knowledge of 
the properties of the several ingredients of a living body 
to be extended and perfected, it is certain that no mere 
summing up of the separate actions of those elements 
will ever amount to the action of the living body itself.”  
(J. S. Mill A System of Logic Bk III, Ch. 6, §1)214

The concept of emergent properties is fundamental to 
systems biology. Recall the systems description of the 
ECG (Fig. 1). A full understanding of the surface ECG 
requires knowledge only of the location and nature of the 
action potentials, which in turn require knowledge only of  
the ion channels, and below this level, only knowledge  
of the proteins of the channel and so on. However, it could 
be argued that the ECG itself contains information that 
could not be readily extracted from mere knowledge of 
each individual ion channel. For example, the PR inter-
val can be measured only at the level of the ECG. The 
PR interval is an example of an emergent property, in 
which real, measurable and reproducible properties can 
be detected only at high levels of complexity and are not 
apparent at more basic levels. Thus, the core network of 
genes identified across multiple diseases in the STARNET 
studies could be considered as a list of genes, but their 
interaction en bloc with the remaining biological system 
might qualify them to be a single unit of observation, to 
be measured and studied as a network rather than as a col-
lection of genes. Such thinking would require new, agreed 
and biologically relevant parameters for the measurement 
of these objects — a non-trivial task.

Current methodology in this regard is immature;  
no agreed parameters for biologically relevant networks 
have been set, let alone the ontology required to describe 
variations of the networks or the interactions between 
them. One salient finding from omics approaches is 
that biological systems are frequently highly redundant, 
with many parallel, regulating and interacting pathways. 
Single-molecule interventions might not be the only sil-
ver bullet cure to complex diseases. The use of more than 
one antiplatelet agent in current clinical practice already 
outlines the beginnings of a systems approach to CVD. 
The technical and methodological challenges stated here 

are likely to be overcome with time. However, proponents 
of emergent properties in medicine should describe what 
an intervention that treats a network or module would 
look like. Is there a therapy that could, even in principle, 
treat the ECG as an ECG and not its underpinning biol-
ogy? In the same way that no therapy ‘treats’ the ECG, 
because the ECG is an integrated measurement of electri-
cal activity, any intervention that would ‘treat’ a network 
would in fact target the network’s components.

A second important philosophical warning must be 
made regarding the increasing enthusiasm for the appli-
cation of more powerful analytical and computational 
methods to personalize medical approaches215. Although 
these approaches will in no doubt increase the amount of 
data available for analysis, the preceding decades of epide-
miology research have highlighted the effects of practically 
(rather than in principle) immeasurable events on health 
and disease outcomes216. This high degree of apparently 
random variation might be theoretically captured but the 
degree to which a single individual could benefit from 
population-based approaches remains undetermined.

Conclusions
The role of systems biology in cardiology is attract-
ing increasing attention217,218. A huge proliferation of 
reports has occurred in the past two decades as pub-
licly available datasets have been published online and 
high-throughput analysis of tissue has become more 
widespread. However, the future for cardiovascular 
medicine is unlikely to be in reanalysing data but in 
leveraging informatics and gene-editing techniques 
to interrogate the function of GWAS-identified SNPs 
or the manipulation of networks, at least in animal 
models219. Combined with subsequent omics interro
gations and careful experimental design, these tech-
niques offer the potential to advance our understanding 
of gene-to-disease pathways.

Systems biology is an approach that provides essen-
tial tools for the analysis of the complex, multidimen-
sional datasets generated by the omics technologies and, 
more widely, the move towards big data in health care. 
Omics experiments are themselves subject to bias and 
overinterpretation and cross-validation of the different 
technological platforms is essential. Investigators must 
carefully choose which publicly available dataset, if any, 
to include in a systems analysis. The use of network the-
ory and machine learning can yield impressive results, 
but these methods are not yet standardized. The studies 
reviewed here are exemplars of high quality, crucially 
because they validate emergent findings from systems 
biology with empirical models. In the few successful 
cases, careful experimental design, including interven-
tional studies and clinical trials, is required alongside 
the insights offered by bioinformatics analysis of omics 
approaches. We argue that, although appealing to emer-
gent properties is tempting in order to capture these new 
findings in more simple concepts, we would side with 
the English philosopher William of Ockham when he 
states: “It is futile to do with more things that which can 
be done with fewer”.

Published online 18 December 2020

Flux balance analysis
Mathematical method for 
simulating metabolic processes 
in genome-scale reconstructions 
of metabolic networks.
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